

Deep into the Coating – Novel Features of MSS-Coatings

Progress of the INTERREG V A-project AutoProtect

Surfaces with self-protective properties for the maintenance of chemical and microbial cleanliness

Webinar#4 Dr. Joachim Meeßen & Dr. Markus Wehrl wfk – Cleaning Technology Institute e. V.

What is a coating?

The fundamental function of coatings is to build a functional barrier between material and environment:

- protect the surface mechanically
- protect the surface chemically
- ease the cleaning of surfaces
- yield antimicrobial activity
- yield electrical properties

Geometric diversity

- thin vs. thick layers
 (< 1 μm or μm-mm)
- unilayered vs. multilayered
- uniform vs. internally structured

\rightarrow scratches, dents, punches

- ightarrow corrosion, decomposition of soiling
- \rightarrow repellant, easy to clean, non-wetable, lotus effect
- \rightarrow inactivation, decomposition
- \rightarrow conductivity

Chemical diversity

- metals and/or glasses
- crystallite materials (coarse, powdery)
- polymers
 (+ dielectric coatings)
- semiconductors
- type of deposition

Diverse application methods

- gaseous (physical vapor deposition, sputtering)
- liquid (spin & dip coating, (spray) painting)
- solid (powder & plasma coating, electro spraying)

What is hygiene?

- is derived from Hygiéia, Greek Goddess of Health
- is the whole range of measures taken to prevent disease and illness
- is aiming to maintain health of humans and the environment
- is a prophylactic measure but not a cure

What are catalytic Multi-Stimulus-Systems coatings (MSS)?

- coatings with a set of catalytic properties \rightarrow additive effect
- · harvest diverse environmental stimuli to activate/excite the catalysts
- higher catalytic activity and higher efficiency
- suitable for multi-purpose applications
 - achieve high antimicrobial activity
 - enhance decomposition of organic soilings
 - ease the cleaning of surfaces
 - protect the surface
- reduce/avoid the use of conventional biocides

Antimicrobial coatings that release soluble agents

- silver, copper, other metals
- antimicrobial peptides
- antibiotics
- ROS-producing catalysts

Objectives of AutoProtect and targeted economic sectors

Objectives of AutoProtect and targeted economic sectors

medical and health

care sector

primary beneficiaries

Economic burden of NI is estimated to be **9 billion €/year** in GER

medical technology pharmaceuticals analytics public health public welfare renewable energies maintenance, facility

management sector

Volume of cleaning services is estimated to be **50-80 billion €/year** in GER

food processing restaurants / catering cosmetics sports facilities wellness/spa/hotel wind / solar power plants production and manufacturing

sector

Volume of soiling-related product failure estimated to be **50-100 € billion/year** in GER

mech. engineering metal working paint / lacquer / varnish construction vehicle operators vehicle manufacturers

Mechanisms of catalytic Multi-Stimulus-Systems (MSS) Example: the photocatalysts TiO₂

- e⁻ and h⁺ can produce ROS which degrade organic compounds and inactivate micro-organisms.

- blue/green may light boost the degradation of (in)organic compounds enormously

Mechanisms of Catalytic Multi-Stimulus-Systems (MSS)

Piezoelectric effect

- change in electrical polarization when subjected to mechanical load and relaxation
 Pyroelectric effect
- temperature fluctuations generate an electric potential across the material
- · all pyroelectric materials are also piezoelectric

Stimuli for Catalytic Multi-Stimulus-Systems (MSS)

stimulus	outdoor conditions	indoor conditions
temperature cycling (ΔT)	daily and high T cycles (>10°C, up to 60°C)	daily but low (<3°C) T cycles, even when not mediated (i.e. AC)
irradiation / insolation / illumination	sufficient insolation 6.500-100.000 lx 80-90% >1.000 lx 10-30% >10.000 lx 70-495 Wh/m² UV per month	insufficient illumination/irradiation 300-2.000 Ix at desk height 50-200 Ix in w/o windows UV via sunlight is scarce glass filters UV
water availability	sufficient supply of water high precipitation (rain, fog, dew) high air humidity (73-83% rel.H.)	insufficient supply of water no precipitation (rain, fog, dew) low air humidity (30-55% rel.H.)
pressure changes (Δp)	low, mostly very local incidence, mainly vibrational, insufficient data	very low, mostly very local incidence, mainly vibrational, insufficient data

The scope of this talk is to focus on photocatalysts and oligodynamic effects!

oligodynamic effect	photocatalysis	pyrocatalysis	piezocatalysis			
Biocidal effect of metals, especially heavy metals	photocatalytic activity	pyroelectric effect	piezoelectric effect			
(such as copper and silver) that occurs even in low concentrations	irradiation	heating/cooling (∆T)	mechanical stress (Δp)			
	electron / hole pairs	electric charge	electric charge			
	$\mathbf{\nabla}$	\Box	$\overline{\mathbf{v}}$			
	free radicals	free radicals	free radicals			
	secondary reactions with organic matter					
	decomposition of organic soilings, inactivation of viruses and microbes					

R

Comparing the effect of metal surfaces with Generation 1 Coatings (metal powder/polymer)

- coatings are an already standing product of an AutoProtect partner
- potential antimicrobial activity is utterly interesting
- tests performed according to ISO 22196:2011-08
- "Measurement of antibacterial activity on plastics and other non-porous surfaces"

Number of surviving bacteria over exposition time (n = 3)

Comparing the effect of metal surfaces with Generation 1 Coatings (metal powder/polymer)

- coatings are an already standing product of an AutoProtect partner
- potential antimicrobial activity is utterly interesting
- tests performed according to ISO 22196:2011-08
- "Measurement of antibacterial activity on plastics and other non-porous surfaces"

Comparing the effect of metal surfaces with Generation 1 Coatings (metal powder/polymer)

• coatings are an already standing product of an AutoProtect partner

The Results – Characterizing and Testing Potential Photocatalysts

Establishing irradiation procedures

- three self-made UV-irradiation chambers build
- UV-B irradiation with narrow spectrum around 366 nm
- height-adjustable stage for variable regulation of the UV dose
- 2 modes of operation: no mirrors: diffuse but uniform, up to 0,52 mW/cm² with mirrors: highly focussed, up to 1,25 mW/cm²
- refurbishable for daylight simulation
- QUV accelerated weathering tester
- UV at 351 nm, up to 45 mW/cm²
- saturation with water vapor possible

60

20

% of max. 40

Commercial photocatalysts

- 13 commercial products tested
- 5 manufacturers
- 11 TiO₂ and 2 ZnO
- 4 rutile-type, 7 anatase-type TiO₂
- 4 UV+VIS active TiO₂ tested
- 7 merely UV active TiO₂ tested
- characterization by
 - particle size (REM) TiO₂: 0,5-2,0 μm ZnO: <0,5 μm
 - aggregation type (REM) mostly massive
 - shape (REM)
 - mostly irregular
 - elementary composition (EDX) Si, Al, et al.

photocatalys	manufacturer	rutile	anatase	VIS activity
TiO ₂	Kronos	1	5	2
TiO ₂	Sigma	1	-	-
TiO ₂	Evonik	-	1	1
TiO ₂	Titan Dix	1	-	-
TiO ₂	HW Nanomaterials	1	1	1
ZnO	Sigma	n. a.	n.a.	n.a.
ZnO	HW Nanomaterials	n.a.	n.a.	n.a.

A CONTRACTOR

Performance testing of the generation 2 coatings developed with an AutoProtect partner

- TiO₂ as a photocatalytic additive with degrading and antimicrobial activity
- copper-containing metal pigments with an oligodynamic effect

metal pigment coating supplemented with the best performing TiO₂ produced & provided by an AutoProtect partner

even dispersion of white TiO₂ particles within in the darkish coating

copper-coloured metallic inclusion in the coating \rightarrow metal pigment with additional oligodynamic effect

Testing the bifunctional Generation 2 Coating

- testing radical formation with the methylene blue and the coumarin assays
- testing the antimicrobial activity with the ISO 22196 assay

Testing the bifunctional Generation 2 Coating

- testing radical formation with the methylene blue and the coumarin assays
- testing the antimicrobial activity with the ISO 22196 assay

NOP ROJECT

Performance testing of the generation 2 coatings developed with an AutoProtect partner

A CONTRACTOR

Performance testing of the generation 2 coatings developed with an AutoProtect partner

inactivation of *E. coli* on coating A2 and A5 after illumination with daylight neon tubes at 222-246 mJ/cm² (30 min) and 444-491 mJ/cm² (60 min)

A CORE

Performance testing of the generation 2 coatings developed with an AutoProtect partner

- testing the antiviral capacity in accordance to ISO 22196 towards the bacteriophage Phi 6
- traits of Phi 6 resemble those of SARS-CoV-2 \rightarrow lipid envelope, +ssRNA, 75nm
- testing under wet conditions, drying may lead to viral inactivation by its own
- complete inactivation of Phi 6 in the dark and under UV after exposure periods of >30min

A CONTRACTOR

Performance testing of the generation 2 coatings developed with an AutoProtect partner

- testing the antiviral capacity in accordance to ISO 22196 towards the bacteriophage Phi 6
- traits of Phi 6 resemble those of SARS-CoV-2 \rightarrow lipid envelope, +ssRNA, 75nm
- · testing under wet conditions, drying may lead to viral inactivation by its own

A CONTROL OF

Synthesis of zinc sulfide nanoporous nanoparticles

Experiment

- synthesis of zinc sulfide nanoporous nanoparticles (ZnS-NPNPs)
- synthesis according to Hu et al. 2005
- synthesis under Argon at Schlenk's line
- compared to commercial ZnS
- testing with MB and coumarin assays
- Results photocatalytic effect with both, commercial ZnS and ZnS-NPNPs
 - self-made ZnS-NPNPs are slightly more efficient photocatalysts
 - results resemble those of mediocre commercial TiO_2

Achievement - first successful in-house synthesis of a new photocatalyst class

A CORE

Synthesis of zinc sulfide nanoporous nanoparticles

- Photocatalytic effect with both, commercial ZnS and ZnS-NPNPs
- self-made ZnS-NPNPs are more efficient than commercial ZnS
- but results resemble those of mediocre commercial TiO₂

Degradation of organic compounds – DNA as a substitute for nucleic acid

- besides radical formation, antibacterial and antiviral activity (self-disinfection), MSS-coatings should degrade organic soilings on surfaces (self-cleaning, easy-to-clean properties)
- typical biological soilings include macromolecules as nucleic acids, proteins, carbohydrates, lipids

351nm irradiation (QUV) of lambda DNA on

351nm irradiation (QUV) and susequent RAPD-PCR of lambda DNA on glass

Degradation of organic compounds \rightarrow bovine serum albumin (BSA) as a common protein

- proteins are extremely critical soilings
- testing with **BSA**: photocatalytic activity breaks up BSA into smaller fragments

measured protein concentration increases when measured by OPA method

Degradation of organic compounds \rightarrow lipase from *C. viscosum* as an enzyme

- proteins are extremely critical soilings
- testing with **enzymes**: photocatalytic activity inactivates the enzymes

enzyme activity decreases when measured in appropriate assay

Degradation of organic compounds \rightarrow lipase from *C. viscosum* as an enzyme

- proteins are extremely critical soilings
- testing with **enzymes**: photocatalytic activity inactivates the enzymes

enzyme activity decreases when measured in appropriate assay

Partners in AutoProtect

Siemsa Beheer B.V.

InnoBus

Robert Beckers Beheer B.V.

Many Thanks to our Funding Authorities

Europäische Union Europese Unie

euregio

Ministerie van Economische Zaken

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

Provincie Noord-Brabant

provincie limburg

provincie Drenthe

Contact Details

Dr. Joachim Meeßen Scientist, Microbiologist

j.meeßen@wfk.de +49 2151 8210171

wfk – Cleaning Technology Institute e.V. Campus Fichtenhain 11 47807 Krefeld / Germany